
LAB 4 – NN TOOLBOX

CE889 – ARTIFICIAL NEURAL NETWORKS

Introduction to Neural Networks Toolbox in

MATLAB

Head of Module : Professor Hani Hagras

Lab Assistant : Aysenur Bilgin

(abilgin@essex.ac.uk)

Lab Assistant : Andrew

Starkey(astark@essex.ac.uk

Introduction

• Neural Network Toolbox™ provides functions and apps for modelling complex

nonlinear systems that are not easily modelled with a closed-form equation.

• NN Toolbox supports supervised learning with feed forward, radial basis, and

dynamic networks. It also supports unsupervised learning with self-organizing

maps and competitive layers.

• With the toolbox you can design, train, visualize, and simulate neural networks.

• For more information on Neural Networks, go to the Help menu in MATLAB.

Neural Network Design Process

• The work flow for the neural network design process has seven primary steps:

1. Collect data

2. Create the network

3. Configure the network

4. Initialize the weights and biases

5. Train the network

6. Validate the network

7. Use the network

Neural Network Design Process

• The Neural Network Toolbox software uses the network object to store all of the

information that defines a neural network.

• After a neural network has been created, it needs to be configured and then

trained.

• Configuration involves arranging the network so that it is compatible with the

problem you want to solve, as defined by sample data.

• After the network has been configured, the adjustable network parameters

(called weights and biases) need to be tuned, so that the network

performance is optimized. This tuning process is referred to as training the

network.

• Configuration and training require that the network be provided with example

data.

Feed Forward Neural Networks

• The architecture of a multi-layer feed forward neural network is as follows:

f1

f1

f1 f2

Hidden Layer weights Output Layer weights

Activation (transfer)
functions

Feed Forward Neural Networks

Simple Neuron

• In the neuron model, f is a transfer function, typically a step function or a

sigmoid function, which takes the argument n and produces the output a.

• Note that w and b are both adjustable scalar parameters of the neuron. The

central idea of neural networks is that such parameters can be adjusted so

that the network exhibits some desired or interesting behaviour.

• Thus, we can train the network to do a particular job by adjusting the weight or

bias parameters, or perhaps the network itself will adjust these parameters to

achieve some desired end.

Network Architecture

• A one-layer network with R input elements

and S neurons.

• In this network, each element of the input

vector p is connected to each neuron

input through the weight matrix W.

• The ith neuron has a summer that gathers

its weighted inputs and bias to form its own

scalar output n(i).

• The various n(i) taken together form an S-

element net input vector n. Finally, the
neuron layer outputs form a column vector

a.

Transfer Functions

• The hard-limit transfer function

limits the output of the neuron to

o either 0, if the net input

argument n is less than 0;

o or 1, if n is greater than or

equal to 0.

• Neurons of this type are used

as linear approximators.

Transfer Functions

• The log-sigmoid transfer function takes the input, which may have any value

between plus and minus infinity, and squashes the output into the range 0 to 1.

• This transfer function is commonly used in backpropagation networks, in part

because it is differentiable.

• The symbol in the square to the right of each transfer function graph shown

above represents the associated transfer function. These icons will replace the

general f in the boxes of network diagrams to show the particular transfer

function being used.

Training Functions

• Once the network weights and biases have been initialized, the network is

ready for training.

• The training process requires a set of examples of proper network behavior -

network inputs p and target outputs t. During training, the weights and biases

of the network are iteratively adjusted to minimize the network performance

function.

Function Algorithm

trainlm Levenberg-Marquardt

trainbr Bayesian Regularization

traingdx Variable Learning Rate Gradient Descent

traingd Gradient Descent

traingdm Gradient Descent with Momentum

Training Functions

• traingd: The weights and biases are updated in the direction of the negative
gradient of the performance function.

• traingdm: The weights and biases are updated according to gradient descent
with momentum.

o Momentum allows a network to respond not only to the local gradient, but also to
recent trends in the error surface.

o Acting like a low-pass filter, momentum allows the network to ignore small features in
the error surface.

o Without momentum a network may get stuck in a shallow local minimum.

o With momentum a network can slide through such a minimum.

• The above algorithms can train any network as long as its weight, net input,

and transfer functions have derivative functions. They are variations of

backpropagation algorithm.

Learning Functions

• learngdm: calculates the weight change dW for a given neuron from the
neuron's input P and error E, the weight (or bias) W, learning rate LR, and

momentum constant MC, according to gradient descent with momentum:

dW = mc*dWprev + (1-mc)*lr*gW. The previous weight change dWprev is

stored and read from the learning state LS.

• learngd: calculates the weight change dW for a given neuron from the
neuron's input P and error E, and the weight (or bias) learning rate LR,

according to the gradient descent dw = lr*gW.

Learning Functions

learncon Conscience bias learning function

learngd Gradient descent weight/bias learning
function

learngdm Grad. descent w/momentum weight/bias
learning function

learnp Perceptron weight/bias learning function

Performance Functions

• The default performance function for feed forward networks is mean square

error mse - the average squared error between the network outputs a and the

target outputs t.

Performance Functions

mae Mean absolute error performance
function

mse Mean squared error performance
function

msereg Mean squared error w/reg performance
function (weight sum of two factors: the
mean squared error and the mean
squared weight and bias values)

sse Sum squared error performance
function

Neural Network GUI in MATLAB

• A simple and user-friendly graphical user interface has been added to the

Neural networks toolbox.

• This interface allows you to:

o Create networks

o Enter data into the GUI

o Initialize, train, and simulate networks

o Export the training results from the GUI to the command line workspace

o Import data from the command line workspace to the GUI

• To open the Neural Network/Data Manager window, just type nntool

• This window has its own work area, separate from the more familiar command

line workspace.

Neural Network GUI in MATLAB

• Once the GUI Neural Network/Data Manager is up and running, you can

o create a network,

o view it,

o train it,

o simulate it and export the final results to the workspace.

• Similarly, you can import data from the workspace for use in the GUI.

Example – Step 1: Data collection

• We create a network to perform the sinusoidal function in the following
example:

• It has an input vector

• and a target vector

• Now we can plot the relation between the two data using

>> p = 0:0.01:2.5;

>> t = sin(2*pi*p);

>> figure;plot(p,t,'o')
>> xlabel('p')
>> ylabel('t')

Example – Step 1: Data collection

• Training data looks as follows:

0 0.5 1 1.5 2 2.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

p

t

Example – Steps 2&3: Network Creation & Configuration

• Go to Neural Network/Data Manager window .

• Click on Import button.

• Select the data you wish to use as input data (p matrix in the example above)

and choose Input Data, then click on Import.

Example – Steps 2&3: Network Creation & Configuration

• Similarly, select the data you wish to use as target (t vector in the example

above) and choose Target Data, then click on Import.

• To also include validation and testing data, import the desired data sets as

Inputs or Targets.

Example – Steps 2&3: Network Creation & Configuration

• In the Neural Network/Data Manager window, p shows as an input and t as
target.

• To create a new network, click on New, and a Create Network or Data
window appears.

Example – Steps 2&3: Network Creation & Configuration

• Enter network1 under Network Name.

• Set the Network Type to feed-forward backprop, as that is the kind of network
we want to create for this example.

Example – Steps 2&3: Network Creation & Configuration

• To set the input range, click on Input data and select p.

• Similarly, click on Target data and select t .

• We want to use trainlm for training function, learngdm for learning function,

and MSE for performance. So, set those values using the arrows for Training

function and Adaption learning function, and Performance function
respectively.

Example – Steps 2&3: Network Creation & Configuration

• For our example, we will construct a simple 2 layer FFNN with a tansig transfer

function as the hidden layer neuron and a purelin transfer function as the
output layer neuron.

• For Layer 1, put 5 in the Number of neurons box. Layer 1 is already set to tansig,
which is what we want.

• Click the drop-down menu Properties for… and choose Layer 2. Next, change

the transfer function to purelin.

Example – Steps 2&3: Network Creation & Configuration

• Next, you might look at the network by clicking on View.

•

• The view shows that you are about to create a network with a single input, a

tansig transfer function for the hidden layer and purelin for the output layer,
and a single output.

• This is the feed-forward network that we wanted. Now, click Create to
generate the network.

Example – Steps 2&3: Network Creation & Configuration

• You will be notified for creating a new network called ‘network1’. Click OK.

• When you get back to the Neural Network/Data Manager window, note that
network1 is now listed as a network.

Example – Steps 4&5: Network Initialization & Training

• Before training a feed forward network, you must initialize the weights and

biases.

• Click on network1 to highlight it. Then click on Open.

• This leads to a new window labelled Network:network1.

• At this point you can view the network again by clicking on the top tab View.

• You can also check the initialization by clicking on the top tab Reinitialize

weights and clicking on Initialize weights button (especially for re-training on
the same data and network).

Example – Steps 4&5: Network Initialization & Training

• For training, specify the inputs and output by clicking on the top tab Train, then
left tab Training Info.

• Select p from the drop-down list of inputs and t from the drop-down list of
targets. The Network:network1 window should look like follows:

• By clicking on Training Parameters tab, you can adjust the number of epochs
(the maximum number of times the complete data set may be used for
training) and show (the time between status reports of the training function).
The default is show = 25. Try setting this value to 10.

• Now click on the Train Network button.

Example – Steps 4&5: Network Initialization & Training

• The pop-up window labelled Neural Network Training (nntraintool) will appear .

You can see here the training results such as; the number of epochs, time, and

performance which are displayed during the training phase.

Example – Steps 4&5: Network Initialization & Training

• You can see the training plot by clicking the Performance button.

Example – Steps 6&7: Network Validation & Testing

• You can check that the trained network does indeed give approximately zero

error by using the input p and simulating the network.

• To do this, go to the Neural Network/Data Manager window and select the

network network1, then double click (or click Open).

• In the Network:network1 window, click on the tab Simulate. Now use the Inputs

drop-down menu to specify p as the input, and label the output as

network1_outputsSim to distinguish it from the training output. Then click

Simulate Network.

Example – Steps 6&7: Network Validation & Testing

• Look at the Neural Network/Data Manager window and you will see a new

variable in the output: network1_outputsSim.

• Double-click on it and a small window Data:Network1_outputsSim appears
with its values.

Example – Exporting the Network

• To export the network, network outputs and errors to the MATLAB command

line workspace, go back to the Neural Network/Data Manager.

• Note that the output and error for the network1 are listed in the Outputs and

Error lists on the right hand side.

• Next click on Export. This will give you an Export or Save from Network/Data

Manager window.

• Click on

o network1,

o network1_outputs

o network1_errors, and

o network1_outputSim to highlight them.

• Then click on the Export button.

Example – Exporting the Network

• These four variables now should be in the command line workspace.

• To check this, go to the command line and type who to see all the defined
variables. The result should be:

• Now we can plot the simulation output with the original target as:

>> who

Your variables are:

network1 network1_outputs p
network1_errors network1_outputsSim t

>> plot(p,t,'o',p,network1_outputsSim,'+')

Example – Plotting the Network outputs

• This plot shows that the output of the trained network (symbol ‘+’) agrees with

the target (symbol ‘o’).

0 0.5 1 1.5 2 2.5
-1.5

-1

-0.5

0

0.5

1

Example – Examining the Network

• Now that network1 is exported you can view the network description and

examine the network weight matrix.

• For instance, the following gives the weight values of the hidden layer:

• For instance, the following gives the bias values of the hidden layer:

• For instance, the following gives the weight values of the output layer:

• For instance, the following gives the bias values of the output layer:

>> network1.iw{1,1}

>> network1.b{1}

>> network1.LW{2}

>> network1.b{2}

Example – Saving the Network

• Go to the Neural Network/Data Manager window and click on Export.

• Select network1 in the variable list of the window and click on Save. This leads

to the Save to a MAT file window. Save to a file named network1 or any name
you like.

Example – Deleting the Network

• Go to the Neural Network/Data Manager window.

• You can clear the variables in the Neural Network/Data Manager window by

highlighting a variable such as p and clicking the Delete button until all entries
in the list boxes are gone.

Exercises

• Create and train different networks with different

configuration:

o Increase the number of the neurons in the hidden layer to

50

o Change the transfer function of both layers to ‘logsig’

o Use ‘traingdm’ as training function instead of ‘trainlm’

o Reduce the number of neurons in the hidden layer to 2

• Use different names for each network above and

also plot the simulation results and network errors for

each case.

References

• Neural Network Toolbox™ User’s Guide
http://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf

• MathWorks Documentation Center

http://www.mathworks.co.uk/help/nnet/index.html

• CE889 Lab Notes (Autumn 2011)

http://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf
http://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf
http://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf
http://www.mathworks.co.uk/help/nnet/index.html
http://www.mathworks.co.uk/help/nnet/index.html

